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Paper [1] solved in the linear formulation the plane unsteady problem
of diffraction of plane weak shock waves by contours of arbitrary shape,
in particular by a circle. We give below the generalization of the re-
sults [1] to three-dimensional problems of diffraction. Use is made of
the following theorem.

Theorem 1. The three-dimensional linear problem of diffraction of
plane weak shock waves by bodies of arbitrary shape Q is equivalent to
the external problem of flow of a four-dimensional steady supersonic
M = 42) stream of ideal gas past a certain hollow semi-infinite four-
dimensional cylinder, corresponding to the body Q, at a small angle of
attack aye

The proof of this theorem is not given - it is analogous to the proof
of the corresponding theorem for plane diffraction problems [1].

1. Paper [1] considers the plane linear problem of diffraction of a
shock wave by an arbitrary contour C or the diffraction of a weak shock
wave by an arbitrary infinite cylinder, when the front of the incident
plane shock wave is parallel to the generators of the cylinder, having
as its transverse section the contour C.

We shall show that this three-dimensional problem, in the case when
the front of the incident shock wave makes with the cylinder axis a
certain arbitrary angle y, reduces to the plane problem of diffraction
considered in [1].
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Assuming the flow of a plane weak shock wave past an infinite
cylinder to be irrotational and isentropic, we can reduce the problem
in the dimensionless formulation to finding the perturbation velocity
potential O, satisfying the equation

o0 a0 *D 320 at
== (t = ) (1.1)

dz? +.8y2 + I R T

where 2! is a characteristic length (for example, the maximum diameter
of the cylinder), and the conditions

P
= — % cos Y —g—y; 4 &/ (s, 2z, t) on the cylinder (1.2)

® =0 at the front of the reflected shock wave S~ (1.3)

Here e is the deformation of the cylinder, n is the normal, s is the
tangent to the cylinder in the xy-plane.

The condition (1.2) is derived from the assumption that the potential
of the incident shock wave is

@y (2,9, 2,T) =ao (yoos Y + z8in ¥ — 1) (1.4)

and the magnitude of deformation of the cylinder e(s, z, 1) is related
to the pressure p(s, z, T) on the cylinder by the relatiomship

e (s, z,%) = k [p (s, 2, ©) — pol (1.5

where k is a coefficient of proportionality. The solution, which is ob-
tained under the assumption (1.4) and (1.5), is not difficult [1] to
generalize to the case when

@z, y, 5, 1) = flycosT+ zsint— ), pls, 50 ="¥le(s z 1]

It is not difficult to see that at any 7 the front of the incident
shock wave intersects the infinite cylinder; the dimensionless velocity
of the wave along the :z-axis is equal to cosec y.

Let us introduce 8 moving system of coordinates
x = x, y =1, M =1secy - Stan?Y (1.6)

In this system of coordinates the potential O(x, y, z, 1) must de-
pend only on x, y, n. Similarly &(s, z, T) also will have the form

e(s, z,7) = & (s, M) a.n

"
e

Moreover it is evident that when m < 0 the potential ®
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In the coordinates (1.6) equation (1.1) and conditions (1.2) to (1.5)
assume the forms

D Y Q@

— 1.8
922 e omE (1.8)

o0 i) pa’k
—37=”—‘100057%+7~16—n2 on C (}‘lz_cosz'r) (1.9)
®=0 when <0 onsS~ (1.10)
@, (zs Y, "l) =QgCOS Y (y - ’1)1 € (S, "l) =k [P (37 71) o PO] (111)

Here (1.9) takes into account that p(s, 7)) x'a®/3n. The system (1.8)
to (1.10) is equivalent to the plane problem of diffraction (1] of a
shock wave by a contour C with the only difference that in place of T
we have 1, and the dimensionless constants depend on Y.

For example, for a circular cylinder of unit radius, when 7 > 0 the
potential O(x, y, z, T) at the surface of the cylinder satisfies the
integro-differential equation

1 9 oV o
@ (1,05, =5 3 (W@ 0, MG = L v]aoam)
=
where Z is the part of the surface of the cylinder in the auxiliary
plane diffraction problem [1]. cut off by the cone of influence from
the point (ry = 1, 60, Ng): r and © are polar coordinates in the (x, y)
plane; V is the Volterra function of the three-dimensional wave equation.

For large n or far behind the front of the incident shock wave

1 £ Ki(rog) exp [g (toseC ¥ — 20 tan?)] dg
[¢1] (rO’ 00, 20, 10) == o7i S Kl’ (q) + quKl (q) _qﬁ_ (1..13)

Here M is the contour of integration of the inverse Laplace trans-
formation, Kl(q) is the Bessel function with imaginary argument.

The deformation € at large 7, for example, is obtained without diffi-
culty as

e (0, z, t) = Ajap cos T sin O {exp [— g1 (M) (R sec T — zwn7)] X
X {4 (A1) eos {g2 (Ay) (v sec ¥ — zwan¥)} + B (M) sin {g2 (A1) (v sec 7T — zuan 7)} | —

__OSO exp [— g (tsec Y — ztwny)] dg } (1.14)
{IK1 (@) + MgKy (@) + n® [} (g) + Mgly (9) )%} ¢°

0

Here ql(Al), qz(hl), A(Al) and B(Rl) are completely determinate func-
tions of Al and —ql(Al) + iqz(Al) is the root of the equation



1082 I.G. Filippov

Ky (q) +MgK1(g) =0 (g1 (M) > 0)

2. Let us consider the problem of diffraction of a weak shock wave
by a sphere of unit radius (Fig. 1). In its dimensionless formulation,
the problem reduces to determination of the
potential ® of the perturbation velocity accord-
ing to the equation

PO | 2 4D 1 o (. 9D\ &0 1z

S T T % TAsmede (S"l 97%) =@ @D
in the region between the surface of the sphere
and the reflected shock wave, with the condi-
tions

o®/or = — agcos 0 + ¢’ (B, 1) whenr =1 y
® =0 whent <O (2.2)
=0 on the reflected shock wave S~ (2.3)
Here r, O and ¢ are spherical coordinates, i.e. Fig. 1.
x = r ¢0S @ sin O, ¥ = rsin @ sin 6, z=rcosB

By virtue of symmetry the potential ® does not depend on ¢.

Just as in Section 1, we assume that the potential 00 of the incident
shock wave is equal to

Do (1'1 Y, 2, 1) = Qg (z'— ':)

and the deformation of the sphere €(0, 1) is linearly related to the
pressure p(®, T) on the sphere according to formula (1.5). According to
Theorem 1 we shall consider the auxiliary external problem of flow of a
supersonic stream of ideal gas at a small angle of attack «, past a four-
dimensional hollow cylinder which is semi-infinite with respect to the
T-axis (T > 0).

Let us consider the pattern of diffraction of the shock wave by the
sphere at a certain moment of time T, > 0. At T = T, the boundary of
the perturbed region in the diffraction problem consists of the re-
flected shock wave and part of the surface of the sphere, when Ty < Ty,
or of the whole surface of the sphere when T, ;>12, where T, is the time
at which the incident shock wave completely envelopes the sphere. Let
us now cut the surface of the four-dimensional cylinder by the plane
T =T, Then the four-dimensional curve of the intersection of the
cylinder by the plane v = T, will correspond to the part of the surface
of the sphere (or the whole surface of the sphere when Tl;Z'Tz),



Linear three-dimensional unsteady problenms 1083

comprising the boundary of the perturbed region in the diffraction prob-
lem.

By virtue of the theorem mentioned above, the external auxiliary
problem is likewise described by the system (2.1) to (2.3), which we
shall solve by a method analogous to Volterra’s method for the three-
dimensional wave equation.

Let us construct the solution V(r, 8, ¢, T Toe 60, Py, Tg) of the
wave equation (2.1) which vanishes at the surface of the characteristic
cone

(o— 1) —(w— 22— (Yo— y)* — (20— 2> =0 (2.4)

It is not difficult to see that the function V has the form [2]

_ Vizo — 2)® + (yo — y)® + (20 — 2)* — (to — %)
Vo — 2 -+ (yo— »)® + (20— 2)°
Following the method of sclution of the wave equation with several
independent variables [2]. we can Show that

14 (2.9)

® (7o, 00, 50) = 75 7% {S_‘SS EXaX) %Vr——%?v]de do ds (2.6)

Since the value of ® on the surface of the four-dimensional cylinder
is unknown, we let r, tend to 1 in (2.6) and obtain an integro-differ-
ential equation for

1 & v oD
@ (1, 0, <o) = EW{SSS [q) (1,6, %) 5 —;V]de 9 dt} @.7)

o

where T and T0 are the volumes or parts of the surfaces of the four-
dimensional cylinder cut off by the comes of influence (2.4) from the
points (r = r,, 60, Tor @) 8nd (ry =1, 60, To» Pp) (Fig. 2), respec-
tively. Determining ®(1, 8, 7) from equation (2.7), we find the quanti-
ties p(1, 6, T) and £(8, T) according to the formulas

L o0
p (1, 0,t) = po— pa’g,‘— , e(0, ) = }w—a? , A= — pa’k (2.8)

We can give an asymptotic solution of the problem of diffraction by
a sphere for large T. In fact, for large T the radius r of the reflected
shock wave depends weakly on © and the potential ® can be sought in the
form

®(r, 0, 1) = —apcos bf (r, 1) 2.9

Let us substitute (2.9) in (2.1) and to the equation so obtained for
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f(r, 1) let us apply the Laplace transformation. For the transformed
function F(r, q), where g is the vari-
able of the Laplace transformation, we
obtain Ressel’s equation

4 \

N e - d*F 2 dF
\ % 3 ~— + — (q + )F =0 (2.10)
\ > /\\\ ‘(To'gw%) '\\ dr r dr

= \
o P/ \ under the condition that
0
T ‘1 aF 1

—_— e e — 2 -_—

s ar 7 Ag*F when r=1 (2.11)
and the function f(r., T), as well as
its derivative with respect to T,
vanish when T < 0.

It is not difficult to see that
(2.12)

F Ks/z (rg) ¢ 1 P
(r, q) = V" 3/21 (9 + AqK3/2 (@ flryn) = i F(r, g) ¢ dg

where K3/2(q) is the spherical Bessel function with imaginary argument.

Substituting (2.12) in (2.9), we obtain an expression for ®(r, 8, T)
for large 7, after which we can calculate the pressure p and the deforma
tion € of the cylinder.

When A = 0 or k = 0 we obtain the solution of the problem of diffrac-
tion by a rigid sphere.

3. Let us consider the diffraction of a shock wave by a prolate
ellipsoid of revolution. Let us introduce spheroidal coordinates,
setting

=2V E—D A cosg Y

y=3 VE=H A= Psing 1

z
ao S 0
2=

where a, is the dimensionless focal distance and
we shall suppose that the shock wave is propa- Fig. 3.
gating along the :z-axis in the positive direction.

Then again by virtue of the symmetry of the problem the potential @
satisfyim the wave equation

wEmmll e 0t nle-mRl=5 e
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will not depend on ¢, whilst O satisfies the conditions

oD a
’é€=—%m+s'(n,1) when § = 1, ® =0 when<t < 0Oand onsS-

(3.2)
The surface of the ellipsoid corresponds to the value § = I.

By virtue of Theorem 1, as in Section 2, we shall solve the corre-
sponding auxiliary problem; when § = 1 we can obtain an integro-differ-
ential equation for @ of the form

1 o ' v D
@ (1, Mo, ) = e {S§S [‘D 1, 7) 28— —a-gV]dn dlpd’t} (3.3)

For an oblate ellipsoid of revolution the equation for ® when & = 1
will have almost the same form as equation (3.3), with just the differ-
ence that a, Will be replaced by — ia0 and § = cosh p by i sinh .

Note. The asymptotic solution for large T of the three-dimensional
diffraction problem can be obtained only for a sphere (or for a circle
in plane problems).

4. Let us consider the plane nonlinear problem of diffraction of a
weak shock wave round a contour C of arbitrary shape (Fig. 3).

We shall assume that the field of flow behind the front of the shock
wave is irrotational and isentropic, which is valid only up to quanti-
ties of the second order in the intensity of the shock. Let us introduce
the velocity potential ®; of the plane flow past the contour C. Then up
to third order forms the potential ¢ = ml/al satisfies the equation

PO | PO 20 a0 O (am PO | 0 azm) @)

a7 T o e s = V5o aat 255 5500 T By Gy ae

where a is the velocity of sound, [ is a characteristic linear parameter
of the problen, ny, is the adiabatic index, x and y are dimensionless co-
ordinates.

The boundary conditions for O are expressed by:

1) no flow of gas through the given contour C,

2) continuity of potential at the front of the reflected shock wave.
Let us consider the first boundary condition.

It means that the velocity of particles across the contour C is zero,

i.e.

o0 /on=20 on C (4.2)
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Let us denote by Go(x, ¥, T) the velocity potential of the gas be-
hind the shock when T < 0. Then the second boundary condition can be
written in the form

D (z,y,1) = Do (z,%,%t) onS when t>0 (4.3)

and equation (4.3) becomes an identity when T < 0. For simplicity we
shall assume that

A
(bo (xy Y, T) = Qo (y - 1)1 Uy = ’;;I'; (44)

where Ap is the increase in pressure at the front of the incident shock
wave, p is the density of the unperturbed gas. Let us set

D(z,y, 1) = Doz, 4, 0) + P (x 9, %) + 92z, 1)+ . . (4.5)

where o, is a quantity of the ith order of smallness. Substituting (4.5)
in (4.1), we obtain

s QA S
ot ay* 9t
o0 o (4.6)
—a;‘—;_-uo-a—; onC, ¢, =0 when ¢ <{ 0 and on §"~
Pes | s O 01 P (63;; Po |, 091 By
Tt T ot T e = e— 1) 05T T2 50 a50r T oy 6y8'\:) 4.7
%z 0 onC, @z = 0 when ¢ <0 and on §~ (4.8)

In this way, the problem of diffraction is reduced to solution of
the systems (4.6) and (4.7) to (4.8) for the potentials ¢,(x, y, T) and
@2(:‘: )": T}'

The linear diffraction problem (4.6) has been solved [1], so we shall
solve the diffraction problem in the second approximation.

Let us proceed to the solution of the system (4.7) to (4.8).

As in the solution of the linear diffraction problem [1] (i.e. in the
solution of the system (4.6)) we can show that the following theorem
holds.

Theorem 2. The problem of diffraction of a weak shock wave by a con-
tour ¢ in the second approximation (4.7) to (4.8) is equivalent to the
auxiliary external problem of flow of a supersonic (M = N2) steady
stream of ideal gas past a hollow cylinder which is semi-infinite along
the T-axis (7T > 0) {1] at a small angle of attack % in the second
approximation, satisfying the same system (4.7) to (4.8) with
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2n, = ny - 1, where ny is the adiabatic index in the auxiliary problem.

We notice that the curve of intersection of the surface of the hollow
cylinder with the plapne T = T corresponds to a part of the contour C
when T, < Ty, comprising the boundary of the reflected shock, or to the
whole contour C when T 2515, where T, is the time at which the incident
shock wave completely engulfs the contour C. Accordingly, we shall solve
the auxiliary external problem, satisfying the system (4.7) to (4.8),
whilst the perturbations from the internal surface will be neglected.

With supersonic velocities of flow past the hollow cylinder, the
problem of finding the solution of equation (4.7) is complicated by the
fact that the term standing on the right-hand side of this equation
undergoes a discontinuity close to the surface of the cylinder. This is
due to the fact that the solution of the linearized equation (4.6)
undergoes a discontinuity on C, since the boundary conditions for
¢,(x, y, T) are given on C. In the solution of equation (4.7) the bound-
ary conditions for Pylx, ¥, T) must also be given on C, which must not
lie in the field of flow. It is evident that the curve C lies outside
the field of flow (it is its boundary) and therefore, in principle, the
system (4.7) to (4.8) is soluble.

The system (4.7) to (4.8) will be solved by Volterra's method. In a
similar way we obtain

B = gl weyograat (((Fenovana w9
z T

Here F(x, y, T) is the right-hand side of equation (4.7); Volterra’s
function has the form

BtV G =P — G — 2 — e — 9
V (zo — z)* 4 (yo — y)?
The integration in (4.9) is carried out with respect to the part of
the surface X of the cylinder which is cut off by the cone of influence

14 (4.10)

(to—1¥ —(2p— 2P — (Yo— 92 =0 (4.11)

from the arbitrary point (x;, y,, T,) and with respect to the volume T

included inside the cone of influence (4.11) and bounded by the surface
of the cylinder £, by the part of the wave surface cut off by the cone

of influence (4.11), and by the surface of the cone of influence [1].

Letting the point (x4, Y5, Tg) tend to the surface of the cylinder
in equation (4.9), we obtain an integral equation for the potential Py
on the surface of the cylinder.

In the solution of the problem (4.7) to (4.8) it is assumed that the
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contour is not deformable.

Let us assume that the contour is deformable and its deformation €
depends linearly on the pressure p(s, T) on C, i.e.

e(s,t) =k [p(s, ©) — pol (4.12)

where k is the coefficient of proportionality and s is the arc length.
The condition (4.2) takes the form

o _ e/ (s,z) onC
an v BT (413)

Let us set
e(s,)=e1(s,T)+e(st)+...=klp@)+p(st)+...— pl (4.14)

If the deformation el(s. T) is known [1],then equation (4.9) takes
the form

% SS [(pz (z, ¥, 1)%2-%%V]ds dc

& n,0)Vadtdn dc} (4.15)

where

A=—pa’k, 3y =M\G7 T 0300t ' 9c 013

In the particular case when the contour C is a circle, the equations
(4.9) and (4.15) have the same form. For a circle, moreover, we can con-
struct the asymptotic solution of the system (4.7) to (4.8), where one
of the boundary conditions can be replaced by the condition (4.13). By
the same token, for large T we can set

09z (a’tpz 0P Py @gﬁgx_) (4.16)

P2 (:t, Y ") = fl (l‘, “) + cos 20,’ (r1 <) (417)
where r and © are polar coordinates.

Let us substitute (4.17) in (4.7), (4.8) and (4.13) and to the system
so obtained let us apply the Laplace transformation. Then Fl(r, q) and
Fz(" q) will satisfy equations

(4.18)
&F 1 dF &*F 1 dF . 4
Pht L pn=vrg @G (Pt w) R
7 dF.
‘%71 = Ag*F3, E_—’ = Ag?F» whenr=1 (4.19)
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The function Po(x, y, ) and its derivatives with respect to T must
vanish when T < 0. The functions F,, F, and ?o, ?2 are the transforms
of the functions f;, f, and y,, y,, obtained by the Laplace transforma-

tion. It is assumed here that
(4.20)

F (f, er T):"PO("» T)+COS 20% (l', T)r ‘pl (rl ey 1)~a05inofl (r, ‘r)

The function f,(r, T)is assumed to be known [1].

It is not difficult to see that the solution of equations (4.18) has
the form
Fy(r, 9) = 4o (r, 9) Ko (rq) + Bo (r, 9) To (r9)
Fy (r, q) = Aa(r, q) Kz (rg) + Ba(r, g) I (rg)

Here Ii(rq) and Ki(rq) (i = 0 or 2) are the Bessel functions of
imaginary argument and

(4.21)

450 q)=—{°j°rlv- o0 Ly ar 0o 1,01, )
‘ P K @—MK () T
— i (@ gof‘l"- (r. ) K; dr} Bi(r, q) = -osorqr. (r, 9) K, (rq) dr (4.22)
K (q) —hgKi () 9 ° > ) ’
Substituting (4.20) in (4.17), we obtain
92 (r, 6, 1) =-2ims [Fy (7, ) + c08 20Fz (r, )] ¢ dg (4.23)
M

From the value of Py (r, 6, T) so obtained and the known Py (r. 9, 1
let us determine p(6, T) on the contour and the deformation €(8, T)
according to the formulas

og o¢s 01 | 0%
p (8, 1)=po—pa’(-é?l+3€), e (0, 1)="'(T;+E) (4.24)

By virtue of the equivalence of the problems the formulas (4.15) and
(4.23) give the solution of the problem of diffraction of a shock wave

by a circle to the second approximation. Formula (4.15) gives the solu-
tion of the diffraction problem also for an arbitrary contour C.

Note. It can be shown that the three-dimensional diffraction problem
can be solved to the second approximation by a method similar to that
described above.
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