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Paper [d solved in the linear formulation the plane unsteady problem 

of diffraction of plane weak shock waves by contours of arbitrary shape, 

in particular by a circle. We give below the generalization of the re- 

sults [II to three-dimensional problems of diffraction. Use is made of 

the following theorem. 

Theorem 1. The three-dimensional linear problem of diffraction of 

plane weak shock waves by bodies of arbitrary shape Q is equivalent to 

the external problem of flow of a four-dimensional steady supersonic 

(M = 42) stream of ideal gas past a certain hollow semi-infinite four- 

dimensional cylinder, corresponding to the body Q. at a small angle of 

attack a,,. 

The proof of this theorem is not given - it is analogous to the proof 

of the corresponding theorem for plane diffraction problems rd. 

1. Paper [ll considers the plane linear problem of diffraction of a 

shock wave by an arbitrary contour C or the diffraction of a weak shock 

wave by an arbitrary infinite cylinder, when the front of the incident 

plane shock wave is parallel to the generators of the cylinder, having 

as its transverse section the contour C. 

We shall show that this three-dimensional problem, in the case when 

the front of the incident shock wave makes with the cylinder axis a 

certain arbitrary angle y, reduces to the plane problem of diffraction 

considered in Ed. 
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Assuming the flow of a plane weak shock wave past an infinite 
cylinder to be irrotational and isentropic. we can reduce the problem 
in the dimensionless formulation to finding the perturbation velocity 
potential 0. satisfying the equation 

i?Q -@_t,?$+$+$ [% =+) (i.1) 

where 21 is a characteristic length (for example, the maximum diameter 
of the cylinder) * and the conditions 

a@ -= - 
an ( a, z, 2) on the cylinder 

CD = 0 at the front of the reflected shock wave S- 

(1.2) 

(i.3) 

Here E is the deformation of the cylinder, n is the normal, s is the 
tangent to the cylinder in the xy-plane. 

The condition (1.2) is derived from the assumption that the Potential 
of the incident shock wave is 

and the magnitude of deformation of the cylinder E(S, z. T) is related 
to the pressure p(s, zI t) on the cylinder by the relationship 

E (ST -6 2) = k Ip (s, 2, 4 - pal (1.5) 

where k is a coefficient of proportionality. The solution, which is ob- 
tained under the assumption (1.4) and (1.5), is not difficult [ll to 
generalize to the case when 

@0(&Y, 2,x) = f(ycosr+ zsiny-- 4, p (s, 2, 2) = y fc. (s, 2, 41 

It is not difficult to see that at any T the front of the incident 
shock wave intersects the infinite cylinder; the dimensionless velocity 

of the wave along the z-axis is equal to cosec y. 

Let us introduce a moving system of coordinates 

2 = 2, Y = YV q=zsecT--2-T (i.6) 

In this system of coordinates the potential @(x, y, Z, T) must de- 
pend only on X, y, rl. Similarly E(S, L, T) also will have the form 

Moreover it is evident that when q < 0 the Potential @ Z 0. 
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In the coordinates (1.6) equation (1.1) and conditions (1.2) to (1.5) 

assume the forms 

a=0 when q<O on S- 

@O (x,y, 11) =aocosr (Y- tl), & (s, tl) = k b (s, rl) - PO] 

Here (1.9) takes into account that p(s, T)) -., a/&l. The system (1.8) 

to (1.10) is equivalent to the plane problem of diffraction [d of a 

shock wave by a contour C with the only difference that in place of T 
we have q, and the dimensionless constants depend on y. 

For example, for a circular cylinder of unit radius, when q > 0 the 

potential 0)(x, y, L, 7) at the surface of the cylinder satisfies the 

integro-differential equation 

cl,(i,0,q)+sV (1.12) 

where 1 is the part of the surface of the cylinder in the auxiliary 

plane diffraction problem cl], cut off by the cone of influence from 

the point (re = 1, 8,, qe); r and 8 are polar coordinates in the (x, y) 

plane: V is the Volterra function of the three-dimensional wave equation. 

For large TJ or far behind the front of the incident shock wave 

1 
@ (TO, 80, zo, 20) = 2ni 

K1 (roq) exp [q (20 set T - zo VT)] dq 
KI’ (4 + &qKl (d -T- P 

(1.13) 

Here bl is the contour of integration of the inverse Laplace trans- 

formation, K1(q) is the Bessel function with imaginary argument. 

The deformation E at large rl. for example, is obtained without diffi- 

culty as 

e (6 z, z) = hia0 cos -f sin e exp [-- q1 (hi) (* set T - z taa r)] x 

X In &I) COs {qz @I) (z set T - z un'r)) -k B @I) sin {qz &I) (T set 7 - zm, T)} I - 

- s exp [-- g(zsecT-- zcaar)]dq 

o { [Kl’ (q) + LqK1 (d12 + II’ 111’ (d + LqZl (dl‘? q2 
(2.14) 

Here q,(h,). q2(hl), A@,) and B(h,) are completely determinate func- 

tions of h, and -q,(h,) + iqg(hl) is the root of the equation 
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KI’ (d + &qKl (4 = 0 (Ql Pl) > 0) 

2. Let us consider the problem of diffraction of a weak shock wave 

by a sphere of unit radius (Fig. 1). In its dimensionless formulation, 
the problem reduces to determination of the 

potential @ of the perturbation velocity accord- 

ing to the equation 

in the region between the surface of the sphere 

and the reflected shock wave, with the condi- 

tions 

N/13r = - a0 cos 0 + .eS’ (0, 2) when r = 1 

@ = 0 when z < 0 

@=O on the reflected shock wave S- (2.3) 
Here r, 8 and 9 are spherical coordinates, i.e. Fig. 1. 

z = r cos cp sin 8, y - r sin cp sin 0, z = r cos 0 

By virtue of symmetry the potential @ does not depend on Q. 

Just as in Section 1, we assume that the potential 0, of the incident 

shock wave is equal to 

a’0 (2, y, 2, d = a0 (2 - 2) 

and the deformation of the sphere ~(0, T) is linearly related to the 

pressure ~(0, T) on the sphere according to formula (1.5). According to 

Theorem 1 we shall consider the auxiliary external problem of flow of a 

supersonic stream of ideal gas at a small angle of attack a0 past a four- 

dimensional hollow cylinder which is semi-infinite with respect to the 

v-axis (T > 0). 

Let us consider the pattern of diffraction of the shock wave by the 

sphere at a certain moment of time -rl > 0. At T = TV the boundary of 

the perturbed region in the diffraction problem consists of the re- 

flected shock wave and part ‘of the surface of the sphere, when TV < 72, 

or of the whole surface of the sphere when ~1 >,T~, where v2 is the time 

at which the incident shock wave completely envelopes the sphere. Let 

US now cut the surface of the four-dimensional cylinder by the Plane 

7 = TI. Then the four-dimensional curve of the intersection of the 

cylinder by the plane T = ~1 will correspond to the part of the surface 

of the sphere (or the whole surface of the sphere when Tl >Tg). 



Linear three-dimensional unsteady problems 1083 

comprising the boundary of the perturbed region in the diffraction prob- 

lem. 

By virtue of the theorem mentioned above, the external auxiliary 

problem is likewise described by the system (2.1) to (2.3). which we 

shall solve by a method analogous to Volterra’s method for the three- 

dimensional wave equation. 

Let us construct the solution V(r, 8, cp, -r; re, 8,. q+.,, T,,) of the 

wave equation (2.1) which vanishes at the surface of the characteristic 

cone 

(20 - T)2 - (x0 - x)2 - (yo - y)Z - (20 - 2)2 = 0 (2.4) 

It is not difficult to see that the function V has the form [21 

I7 = Jf(xo ---=- (yo - Y)a + (zo - z)2 - (20 - 2) 

1/(zo - XT + (YO - YF + (zo - 42 
(2.5) 

Following the method of solution of the wave equation with several 

independent variables [d, we can show that 

Since the value of 0 on the surface of the four-dimensional cylinder 

is unknown, we let r e tend to 1 in (2.6) and obtain an integro-differ- 

ential equation for 

1 a= -- Q, (1, 607 20) = 4n azoa I’] d6 dq dz} (2’3 

To 

where T and To are the volumes or parts of the surfaces of the four- 

dimensional cylinder cut off by the cones of influence (2.4) from the 

points (r = roe 8,. T,,, me) and (ru = 1. 8,. -re, ‘pc) (Fig. 2). respec- 

tively. Determining @(l, 8. T) from equation (2.7). we find the quanti- 

ties ~(1. 8. T) and E(e, T) according to the formulas 

83 
w,d =haz, 1. = - pa’k (2.8) 

We can give an asymptotic solution of the problem of diffraction by 

a sphere for large T. In fact, for large T the radius r of the reflected 

shock wave depends weakly on 8 and the potential @ can be sought in the 

form 

@ (r, 0, 7) = -a0 cos ej (r, 2) (2.9) 

Let us substitute (2.9) in (2.1) and to the equation so obtained for 
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f(r. T) let us aPPlY the LaPlace transformation. For the transformed 

Fig. 2. 

function F(r, (I), where p is the vari- 
able of the Laplace transformation, we 

obtain Bessel’ s equation 

g + +z - [qa + +) F = 0 (2.10) 

under the condition that 

dF 1 
dr= q - - Xq2F when r = 1 (2.11) 

and the function f(r. T), as well as 
its derivative with respect to T, 
vanish when T < 0. 

It is not difficult to see that 
(2.12) 

F (r, 4) = 
1 

f (~9 Z) = zni F (ps q) eqr dq 

where K3,2(q) is the spherical Bessel function with imaginary argument. 

Substituting (2.12) in (2.9), we obtain an expression for @(r. 8. T) 
for large 7. after which we can calculate the pressure p and the deforma 

tion E of the cylinder. 

When A = 0 or k = 0 we obtain the solution of the problem of diffrac- 

tion by a rigid sphere. 

3. Let us consider the diffraction of a shock wave by a prolate 

ellipsoid of revolution. Let us introduce spheroidal coordinates, 

setting 

x= F J/-(5” - 1) (1 - Tf) cos cp 

Y = +- v@? - 1) (1 - 7”) sincp 

where ou is the dimensionless focal distance and 
we shall suppose that the shock wave is propa- 

gating along the r-axis in the positive direction. 

kY 

c 

+ 

s 0 X 

Fig. 3. 

Then again by virtue of the symmetry of the problem the potential 0 

satisfyin the wave equation 
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will not depend on 9, whilst 0 satisfies the conditions 

aa ooaon 
- - - ’ a: 2 i- E (n, 2) when 5 = 1, 0 = 0 when T < 0 and on S- 

(3.2) 
The surface of the ellipsoid corresponds to the value < = 1. 

By virtue of Theorem 1, as in Section 2, we shall solve the corre- 

sponding auxiliary problem; when c = 1 we can obtain an integro-differ- 

ential equation for 0 of the form 

1 a2 
@ (1, 110, 20) = xdzo” -MS L .@ (1, q, ,,$$+]dqd~d~} (3.3) 

T, 

For an oblate ellipsoid of revolution the equation for d, when < = 1 

will have almost the same form as equation (3.3), with just the differ- 

ence that Qe will be replaced by - ia,, and < = cash p by i sinh p. 

Note. The asymptotic solution for large T of the three-dimensional 

d!ffraction problem can be obtained only for a sphere (or for a circle 

in plane problems). 

4. Let us consider the plane nonlinear problem of diffraction of a 

weak shock wave round a contour C of arbitrary shape (Fig. 3). 

We shall assume that the field of flow behind the front of the shock 

wave is irrotational and isentropic, which is valid only up to quanti- 

ties of the second order in the intensity of the shock. Let us introduce 

the velocity potential 01 of the plane flow past the contour C. Then up 

to third order forms the potential @ = o,/Ql satisfies the equation 

where a is the velocity of sound, 1 is a characteristic linear parameter 

of the problem, n,, is the adiabatic index, x and y are dimensionless co- 

ordinates. 

The boundary conditions for @ are expressed by: 

1) no flow of gas through the given contour C, 

2) continuity of potential at the front of the reflected shock wave. 

Let us consider the first boundary condition. 

It means that the velocity of particles across the contour C is zero, 

i.e. 

a@ / an = 0 on C (4.2) 
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Let us denote by @o(x, y, 5) the velocity potential of the gas be- 

hind the shock when T < 0. Then the second boundary condition can be 
written in the form 

and equation (4.3) becomes an identity 
shall assume that 

on S- when 2>0 (4.3) 

when v < 0. For simplicity we 

4Bo b, Yt 2) = a0 (Y - 4, 010 = 
AP 
ii? 

where Ap is the increase in pressure at the front of the incident shock 

wave, p is the density of the unperturbed gas. Let us set 

@ (2, Y7 4 = Qo (II YI 4 + qQ ($9 Y9 ‘c) + fpa (2, Y, 2) + . * . (4.5) 

where 9i is a quantity of the ith order of smallness. Substituting (4.5) 

in (4.1), we obtain 

@Tl @TJl ml 

-$p+aya-,2,=0 

%l +/ 
(4.6) 

---~-qj-- 
an an 

on C, cpl = 0 when z < 0 and on S’ 

*a 
an=0 one, ‘ps = 0 when z < 0 and on S- 

In this way, the problem of diffraction is reduced to solution of 

the systems (4.6) and (4.7) to (4.8) for the potentials ~Q(x, y, -r) and 

9,(x, y0 v>. 

The linear diffraction problem (4.6) has been solved [11, so we shall 

solve the diffraction problem in the second approximation. 

Let us proceed to the solution of the system (4.7) to (4.8). 

As in the solution of the linear diffraction problem 113 (i.e. in the 
solution of the system (4.6)) we can show that the following theorem 

holds. 

Theorem 2. The problem of diffraction of a weak shock wave by a con- 

tour C in the second approximation (4.7) to (4.8) is equivalent to the 

auxiliary external problem of flow of a supersonic (I = \f 2) steady 
stream of ideal gas past a hollow cylinder which is semi-infinite along 

the -r-axis (T 20) [d at a small angle of attack a0 in the second 

approximation, satisfying the same system (4.7) to (4.8) with 
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2n1 = no - 1, where n1 is the adiabatic index in the auxiliary problem. 

We notice that the curve of intersection of the surface of the hollow 
cylinder with the plane -r = Al corresponds to a part of the contour C 
when v1 < f2, comprising the boundary of the reflected shock, or to the 
whole contour C when -rl >-rg, where -r2 is the time at which the incident 
shock wave completely engulfs the contour C. Accordingly, we shall solve 
the auxiliary external problem, satisfying the system (4.7) to (4.8). 
whilst the perturbations from the internal surface will be neglected. 

With supersonic velocities of flow past the hollow cylinder, the 
problem of finding the solution of equation (4.7) is complicated by the 
fact that the term standing on the right-hand side of this equation 
undergoes a discontinuity close to the surface of the cylinder. This is 
due to the fact that the solution of the linearized equation (4.6) 
undergoes a discontinuity on C, since the boundary conditions for 

Tl(X’ Y4 7) are given on C. In the solution of equation (4.7) the bound- 
ary conditions for Q,(x, y, T) must also be given on C, which must not 
lie in the field of flow. It is evident that the curve C lies outside 
the field of flow {it is its boundary) and therefore, in principle, the 
system (4.7) to (4.8) is soluble. 

The System (4.7) to (4.8) will be solved by Yolterra’s method. In a 

similar way we obtain 

Here F(x, Yr 7) is the right-hand side of equation (4.7); Volterra’s 
function has the form 

V = In 
(x0 - 7) + 1/ (To - %)a - (zo - r)* - (Yo - YP 

If (20 - %I8 + (YO - YP 
(4.10) 

The integration in (4.9) is carried out with respect to the part of 
the surface z of the cylinder which is cut off by the cone of influence 

(20 - %)a - (20 - # - (90 - $8 = 0 (4.11) 

from the arbitrary point (x,, yo’ te) and with respect to the volume T 

included inside the cone of influence (4.11) and bounded by the surface 
of the cylinder f, by the part of the wave surface cut off by the cone 
of influence (4.11). and by the Surface of the cone of influence [I]. 

Letting the point (ro, y,,, T(,) tend to the surface of the cylinder 

in equation (4.9), we obtain an integral equation for the potential ‘pZ 
on the surface of the cylinder. 

In the solution of the problem (4.7) to (4.8) it is assumed that the 
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contour is not deformable. 

Let us assume that the contour is deformable and its deformation E 
depends linearly on the pressure p(s. -r) on C, i.e. 

e 6% 4 = k [p (s, 2) - pa] (4.12) 

where k is the coefficient of proportionality and s is the arc length. 
The condition (4.2) takes the form 

an = e,’ (s, r) on C 
(4.13) 

Let us set 

e (s, 2) = el (s, 2) + ez (s, 2) + . . . = k (~1 (s, ~1 + P (8, z) + . . . - PO] (4.14) 

If the deformation E~(s, -r) is known [lj , then equation (4.9) takes 
the form 

1 a 
92 (201 YOr -To) = zn aso ISS[ W -- ‘pa b, Y, 2)an -$$V dsdz + ~ I 

+S$~F(E,%C)VdEd’HC} 
T 

where 

1 = - paak, 

(4.15) 

(4.16) 

In the particular case when the contour C is a circle, the equations 

(4.9) and (4.15) have the same form. For a circle, moreover. we can con- 
struct the asymptotic solution of the system (4.7) to (4.8). where one 
of the boundary conditions can be replaced by the condition (4.13). By 
the same token, for large T we can set 

(pr (2, Y* 2) = fib, 4 + cos 2fvr e, 4 (4.17) 

where r and 8 are polar coordinates. 

Let us substitute (4.17) in (4.7). (4.8) and (4.13) and to the System 
so obtained let us apply the Laplace transformation. Then Fl(r, q) and 
F,(r, q) will satisfy equations 

(4.18) 

9 + + ‘+- $Fl = YO (r, q), @$+fdL (qPf 2-) Fa = ‘KY (r, q) 

dF1 
-& = IqaF1, 

dFa 
- = kqaF2 dr when r = 1 (4.19) 
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The function q~g(x, y, T) and its derivatives 

vanish when -r < 0. The functions Fl, Fp and ‘i’,,, 

of the functions fl, fp and yyo, yy2, obtained by 

tion. It is assumed here that 

problems 1089 

with respect to T must 

5 are the transforms 

the Laplace transforma- 

(4.20) 
F (r, 0, z) = $0 P, ~‘1 + ~0s 2Olpa (r, 13. ‘PI (r, 0, 2) - a0 sin Ofi (r, z) 

The function fl(r. T) is assumed to be known [d. 

It is not difficult to see that the solution of equations (4.18) has 

the form 

PI (r. q) = A0 (r, q) KO W f- BO (r, 4 10 W 

Fa (r, q) = Aa (r. q) Ka (rd + Ba (r, 4) Za (rq) 
(4.21) 

Here Ii and Ki(rq) (i = 0 or 2) are the Bessel functions of 
imaginary argument and 

co 
Zi’ (4 

co 

Ai (r, q) = - {J rvi (r, d Ii (4 dr + s 
r Ki’ (d - Wi (d 1 

rli (r, d 1, h) dr- 

Ki (d 
00 03 

- Ki’ (4 s - hKi (d , S r’4i (r, q) Ki (rq) dr (4.22) f 
Substituting (4.20) in (4.17). we obtain 

1 
‘pr (r, 8, 2) = 2ni 

s 
[Fr (r, q) -I- co9 2Wa (r, q)l eqr dq (4.23) 

M 

From the value of q,(r, 8, -r) so obtained and the known q,(r. 9. v) 

let us determine ~(8, ;) on the 

according to the formulas 

p (e, -d = p. - PO' 2 + ( 

contour and the deformation ;(8, 7) 

(4.24) 

By virtue of the equivalence of the problems the formulas (4.15) and 

(4.23) give the solution of the problem of diffraction of a shock wave 

by a circle to the second approximation. Formula (4.15) gives the solu- 

tion of the diffraction problem also for an arbitrary contour C. 

Note. It can be shown that the three-dimensional diffraction problem 

can be solved to the second approximation by a method similar to that 

described above. 
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